skip to main content


Search for: All records

Creators/Authors contains: "Wise, Erika K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The timing and intensity of precipitation varies from year‐to‐year and is expected to change in the future. Assessing the impacts of this moisture delivery variability on tree growth is important both for future forest health and for our interpretation of pre‐instrumental tree‐ring records. Here, we used the Vaganov‐Shashkin model to investigate how changes in precipitation delivery impact tree growth at five sites representing four species in two North American river basins with high precipitation variability but different seasonal cycles. Evenly distributed precipitation increased tree growth in the Lower Sacramento watershed, while the water‐limited South Platte benefited from concentrated precipitation early in the growing season. Although most experimental simulations retained the pattern of high‐ and low‐growth years, tree growth was reduced with fewer, more intense precipitation events, which could affect interpretation of past climate extremes. Under the RCP4.5 scenario, projected warming offset the potential benefits of increased precipitation on tree growth.

     
    more » « less
  2. Abstract

    Tree‐ring records of preinstrumental hydroclimate, which contribute needed context for understanding recent drought and flood events, typically provide one value per year that represents the entire year or one particular season. This may introduce a seasonal bias to the records or omit seasonally variable moisture. Here, I use tree‐ring records to reconstruct precipitation and runoff in 28 U.S. West Coast watersheds for running 1, 3, 6, and 12‐month intervals. When compared on a yearly basis, the Monthly and Four‐Season models have higher overall skill and better extreme capture in most basins than the Cool‐Warm and Annual models. The Monthly and Four‐Season versions also decrease model error in years with more intense precipitation and retain more variability in the preinstrumental period. Improved capture of year‐round moisture can provide a more complete representation of the preinstrumental past and strengthen capacity to study shorter‐duration and season‐specific events like atmospheric rivers.

     
    more » « less
  3. Abstract

    The Missouri River basin is subject to extremes in both high and low flow, with damaging floods and droughts occurring over the instrumental period. Recent events of the 2000s are notable for rapid transitions from dry to wet conditions, and for the different timing of these conditions in the upper and lower basins. This study focuses on drought in the upper and lower Missouri River basins (defined as above and below the Missouri/Yellowstone River confluence), with particular attention to the climate and synoptic scale patterns during drought in the basin's two main source regions over the years 1912–2011. Six drought events were identified in the upper basin, ranging from 2 to 12 years, and eight events were identified in the lower basin, lasting from 2 to 16 years. Almost all upper and lower basin droughts overlapped in time, but only the 1930s drought occurred in both basins over the exact same years. Hydroclimate analyses show that the worst‐case scenario for basin‐wide drought conditions includes a dry winter in the upper basin and a dry spring/summer in the lower basin, accompanied by warm temperatures. The recent 2000s drought in the Missouri River basin displayed anomalous characteristics relative to past droughts, including warm temperatures across the entire basin, particularly in spring and summer, a weakened Great Plains Low Level Jet, and a lag in the upper basin recovery time. In the past, upper basin flows have compounded or ameliorated regional flooding or basin‐wide drought conditions, but a decreasing trend in the upper basin contribution to total Missouri River flow is evident and expected to continue, suggesting its role relative to the lower basin is changing.

     
    more » « less
  4. Abstract

    Paleoclimate data play a critical role in contextualizing recent hydroclimate extremes, but asymmetries in tree‐ring responses to extreme climate conditions pose challenges for reconstruction and interpretation of past climate. Here we establish the extent to which existing tree‐ring records capture precipitation extremes in western North America and evaluate climate factors hypothesized to lead to asymmetric extreme capture, including timing of precipitation, seasonal temperatures, snowpack, and atmospheric river events. We find that while there is dry‐biased asymmetry in one third of western North American tree‐ring records, 45% of sites capture wet extremes as well as or better than dry extremes. Summer extremes are rarely captured at any sites. Latitude and elevation affect site‐level extreme responses, as do seasonal climate conditions, particularly in the autumn and spring. Directly addressing asymmetric extreme value capture in tree‐ring records can aid our interpretation of past climate and help identify alternative avenues for future reconstructions.

     
    more » « less
  5. Across the Upper Missouri River Basin, the recent drought of 2000 to 2010, known as the “turn-of-the-century drought,” was likely more severe than any in the instrumental record including the Dust Bowl drought. However, until now, adequate proxy records needed to better understand this event with regard to long-term variability have been lacking. Here we examine 1,200 y of streamflow from a network of 17 new tree-ring–based reconstructions for gages across the upper Missouri basin and an independent reconstruction of warm-season regional temperature in order to place the recent drought in a long-term climate context. We find that temperature has increasingly influenced the severity of drought events by decreasing runoff efficiency in the basin since the late 20th century (1980s) onward. The occurrence of extreme heat, higher evapotranspiration, and associated low-flow conditions across the basin has increased substantially over the 20th and 21st centuries, and recent warming aligns with increasing drought severities that rival or exceed any estimated over the last 12 centuries. Future warming is anticipated to cause increasingly severe droughts by enhancing water deficits that could prove challenging for water management. 
    more » « less
  6. Abstract

    Primary production is the entry point of energy and carbon into ecosystems, but modeling responses of primary production to “environmental stress” (i.e., reductions of primary production from nonoptimal environmental conditions) remains a key challenge and source of uncertainty in our understanding of Earth's carbon cycle. Here we develop an approach for estimating annual “environmental stress” from tree rings based on the proportion of the optimal diameter growth rate (from species‐specific allometric equations) that is realized in a given year. We assessed climatic, topographic, and soil drivers of environmental stress, as well as their interactions, using both empirical model experiments and linear mixed effect models. Climate gradients and interannual climate variability dominated spatial and temporal variability of environmental stress in much of the western United States, where the tree‐ring environmental stress index was positively correlated with antecedent climatic water balance (precipitation minus potential evapotranspiration) and negatively correlated with temperature and vapor pressure deficit. Excluding topographic and soil information from empirical models reduced their ability to capture spatial gradients in environmental stress, particularly in the eastern United States, where growth was not as strongly limited by climate. Mean climate conditions and topographic characteristics had significant interaction effects with the climatic water balance, indicating an increasing importance of winter moisture for warmer and drier sites and as elevation and topographic wetness index increased. These results suggest that including effects of antecedent climate (particularly in dry regions) and site topographic and soil characteristics could improve parameterization of environmental stress effects in primary production models.

     
    more » « less
  7. Abstract

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool‐season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool‐season standardized precipitation‐evapotranspiration index, April snow water equivalent, and water year streamflow from a network ofUSGSstream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree‐ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool‐season storm tracks entered western North America between approximately 41°N and 53°N. Cool‐season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south‐shifted storm tracks, while Canadian ecosystems were greener in years when the cool‐season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north‐shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool‐season storm tracks.

     
    more » « less